If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5a^2-100=0
a = 5; b = 0; c = -100;
Δ = b2-4ac
Δ = 02-4·5·(-100)
Δ = 2000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2000}=\sqrt{400*5}=\sqrt{400}*\sqrt{5}=20\sqrt{5}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{5}}{2*5}=\frac{0-20\sqrt{5}}{10} =-\frac{20\sqrt{5}}{10} =-2\sqrt{5} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{5}}{2*5}=\frac{0+20\sqrt{5}}{10} =\frac{20\sqrt{5}}{10} =2\sqrt{5} $
| -8=6.7v | | 4s-21=3+s | | 9(n+2)=99 | | 7=4+r | | 12+5g=47 | | 5x+2(5x+5)+10=80 | | 0=x^2+9x-121 | | -7/x+10=7 | | 20/0.5=x | | 21(b-45)-51(b-56)=20b+97b | | (3x+5)^2-6(3x+5)+9=0 | | 9(q+1)=90 | | 2-4(x+2)=16+2(4+3x) | | 5^(2x)=11 | | 4^3x-2=(1/8)^2x-1 | | -7(p-91)=0 | | -4(d-7)=524 | | 81=4d+9 | | 23-3j=11 | | 100/10-x=17 | | 10(-13-x)+11=-14-63 | | x^2=3^49 | | 6v^2-19v=0 | | 4(x+1)-4=3x+5 | | 4/10-x=19 | | p(4)=1/6 | | 16=x/12+8 | | (x-8)/8=8(8x-64) | | 24x=5(x^2-1) | | -2x+50=50x+-2 | | 16^2=15^2-x^2 | | 50x+50=50x+-2 |